Riesz transform characterization of H1 spaces associated with certain Laguerre expansions
نویسنده
چکیده
In this paper we prove Riesz transform characterizations for Hardy spaces associated with certain systems of Laguerre functions.
منابع مشابه
Divergent Cesàro and Riesz means of Jacobi and Laguerre expansions
We show that for δ below certain critical indices there are functions whose Jacobi or Laguerre expansions have almost everywhere divergent Cesàro and Riesz means of order δ.
متن کاملBoundedness for Riesz transform associated with Schrödinger operators and its commutator on weighted Morrey spaces related to certain nonnegative potentials
*Correspondence: [email protected] School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China Abstract Let L = – + V be a Schrödinger operator, where is the Laplacian on Rn and the nonnegative potential V belongs to the reverse Hölder class Bq for q≥ n/2. The Riesz transform associated with the operator L is denoted by T =∇(– + V)– 2 and the dual Ri...
متن کاملDecomposition of Triebel–Lizorkin and Besov spaces in the context of Laguerre expansions
A pair of dual frames with almost exponentially localized elements (needlets) are constructed on R+ based on Laguerre functions. It is shown that the Triebel–Lizorkin and Besov spaces induced by Laguerre expansions can be characterized in terms of respective sequence spaces that involve the needlet coefficients. © 2008 Elsevier Inc. All rights reserved.
متن کاملOn radial Fourier multipliers and almost everywhere convergence
We study a.e. convergence on L, and Lorentz spaces L, p > 2d d−1 , for variants of Riesz means at the critical index d( 1 2 − 1 p )− 1 2 . We derive more general results for (quasi-)radial Fourier multipliers and associated maximal functions, acting on L spaces with power weights, and their interpolation spaces. We also include a characterization of boundedness of such multiplier transformation...
متن کاملConvolution for the Discrete Wavelet Transform
Translation and convolution associated with discrete wavelet transform are investigated using properties of Calderón-Zygmund operator and Riesz fractional integral operator. Dual convolution is also studied. The wavelet convolution is applied to approximate functions belonging to certain p L-spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Approximation Theory
دوره 164 شماره
صفحات -
تاریخ انتشار 2012